Matemática

Mínimo múltiplo comum – O que são, como calcular, propriedades do MMC

Mínimo múltiplo comum (MMC) está relacionado ao menor número positivo, diferente de zero, que é múltiplo de dois ou mais números.

Atualizado em 22/06/2020

Estudar matemática e as várias fórmulas e maneiras de calcular números não é tarefa fácil, não é? Mas que tal aprender mais sobre o mínimo múltiplo comum, também chamado de MMC? Pois bem, a sigla se refere a soma para que ao final de cada cálculo, se encontre o menor número positivo. Nesse sentido, o zero não entra na contagem, já que é o múltiplo comum de todos os números dados.

Dessa forma, o MMC é utilizado, por exemplo, quando o objetivo é encontrar denominadores comuns em operações com frações. Assim, o esperado é que o denominador seja comum durante todo o cálculo. Assim, é possível encontrar, durante o processo, números múltiplos. Ou seja, os números que multiplicados por números naturais se tornam múltiplos.

Um exemplo que podemos citar de MMC, entre os números 2 e 12 é 12, é o 2. Isso porque, os múltiplos de 2 são 2, 4, 6, 8, 10, 12 e assim por diante. Dessa forma, esse é um dos métodos de observar o MMC. Logo, existe uma fórmula usada para que o mínimo múltiplo comum seja encontrado, sedo ela MMC(a, b, c) = d, sendo “d” o MMC de “a”, “b” e “c”.

Encontrando o mínimo múltiplo comum

Para encontrar o mínimo múltiplo comum de um conjunto de números pode ser mais fácil do que se imagina. Assim, é importante encontrar os números múltiplos e, dessa forma, chegar ao menor número que seja comum a todos os outros números do conjunto.

Mínimo múltiplo comum - Como calcular, propriedades e características
Mínimo Múltiplo Comum (MMC) possui duas propriedades diferentes. Fonte: Estudo prático

Nesse sentindo, para calcular o MMC dos números 2, 4 e 12, é possível seguir a seguinte fórmula:

M(2) = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, …}

M(4) = {4, 8, 12, 16, 20, 24, …}

M(12) = {12, 24, 36, 48, …}

Dessa forma, é importante observar a intersecção entre os números propostos. Assim, temos M(2) ∩ M(4) ∩ M(12) = {12, 24, …}. Logo, o menor número resultado desse calculo é  12, sendo o número múltiplo. Logo, MMC (2, 4, 12) = 12.

Método para calcular o MMC

É possível calcular o MMC decompondo os fatores primos ou fazendo uma decomposição simultânea. Entretanto, para que os números sejam calculados em decomposição de fatores, é preciso seguir algumas regras. Dentre elas, é importante destacar:

  • Decompor os números dados em fatores primos;
  • Colocar os fatores primos comuns ou não comuns com seus expoentes maiores;
  • Fazer o produto desses fatores primos.

Nesse sentido, o cálculo é feito colocando os números que serão calculados pelo MMC lado a lado, separando os por vírgula. Em seguido, deve-se encontrar o número primo que seja divisível por pelos menos um deles. Assim, coloca-se o resultado logo a baixo. Lembrando que o processo deve ser repetido até que, ao final dos cálculos, o resultado seja 1.

Mínimo múltiplo comum - Como calcular, propriedades e características
MMC corresponde o menor número diferente de zero que será múltiplo ao mesmo tempo de uma quantidade determinada de termo. Fonte: Click estudante

Para exemplificar, podemos utilizar o seguinte esquema, para encontrar o mínimo múltiplo comum entre 144, 26 e 10:

144, 26, 10 | 2

72, 13, 5 | 2

 36, 13, 5 | 2

18, 13, 5 | 2

9, 13, 5 | 3

3, 13, 5 | 3

1, 13, 5 | 5

1, 13, 1 | 13

1, 1, 1 |

Após o cálculo, é possível concluir que o MMC (144, 26, 10) = 2·2·2·2·3·3·5·13 = 9360.

Propriedades do MMC

  • O MMC entre dois números primos, será o produto entre eles;
  • Na relação entre dois números em que o maior é divisível pelo menos, o MMC será o maior deles;
  • Multiplicando ou dividindo dois números por um outro número diferente de zero, o mmc aparece multiplicado ou dividido por esse outro;
  • Ao dividir o MMC de dois números pelo máximo divisor comum (MDC) entre eles, o resultado obtido é igual ao produto de dois números primos entre si;
  • Ao multiplicar o MMC de dois números pelo máximo divisor comum (MDC) entre eles, o resultado obtido é o produto desses números.

O que achou da matéria? Se gosta de matemática, não deixe de conferir o curioso Dia do Pi, além de entender mais sobre as formas geométricas.

Fontes: Matemática Básica, Brasil Escola

Fonte imagem destaque: Guto Azevedo

Por <a href='https://conhecimentocientifico.r7.com/author/dayane/' rel='dofollow' class='dim-on-hover'>Dayane Borges</a>
Por Dayane Borges
Jornalista e redatora com experiência em escrita criativa, adequação e produção de conteúdos multimídia para a web.